博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
openCV2马拉松第18圈——坐标变换
阅读量:6821 次
发布时间:2019-06-26

本文共 9454 字,大约阅读时间需要 31 分钟。

计算机视觉讨论群162501053
转载请注明:http://blog.csdn.net/abcd1992719g
收入囊中
  • 仿射变换
  • 坐标映射
  • 利用坐标映射做一些效果,例如以下
上面是原图,以下是利用坐标映射后的结果
该问题来自于http://zhidao.baidu.com/link?

url=OvyNHG3WKjwxbiJDOWund5lfoAPXkxXdzSyFcQqI3NKsJZkqOZjlPegJ4DG75vOosupgaM3iklTPnq3TSzHnZq

葵花宝典
先说一下什么是仿射变换
平移是最简单的变换
缩放也比較简单
翻转也非经常见
旋转也能够通过旋转矩阵表示
错切,指的是类似于不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程。那就是“错切”的过程
仿射是这5种操作的组合,保持了平行性,给定仿射矩阵,能够非常easy的变换坐标。原坐标乘变换矩阵就能够得到新的坐标。

详细原理:http://baike.baidu.com/view/954621.htm?

fr=aladdin

那么我们怎么进行仿射变换呢?
我们知道仿射变换描写叙述了两张图片的关系。我们的任务就是找出仿射变换的矩阵。

我们仅仅要知道3个相应点,就能知道这个矩阵。OpenCV提供了这样一个计算的函数

getAffineTransform
Theory of Warp Affine

Image1中的点1。2,3相应到了Image2中的点1,2。3。这样我们就能得到仿射矩阵。于是Image1中的全部点都能通过这个仿射矩阵映射到Image2中

Original image

仿射变换后

Original image
坐标映射
最简单的坐标映射是一一相应,可是事情非常多时候不是这种。

在做图像增强时。我们改变的时图像的值域,g(x)output   f(x)是input   h是我们的方法,比方对照度增强直方图均衡化      用g(x) = h(f(x)) 

可是在坐标变换,改变的是定义域, g(x) = f(h(x)) 

如果我们有源图像f和坐标映射函数h,我们要怎么计算输出图像g呢?

大部分人都会这样

procedure forwardWarp(f,h,outg):

For every pixelxinf(x)

1. Compute the destination locationx=h(x).

2. Copy the pixelf(x)tog(x)

我一開始也是这样想的。那就是遍历源图像,对一个Point p,应用变换函数h计算其在输出图像的坐标P',然后复制
这样的想法非常自然,仅仅只是有非常多缺陷。最最主要的一个问题就是映射出来的非常少是整数,会引来一系列问题。造成比方一个非常大的空洞等等。
因此。我们应该採用

procedure inverseWarp(f,h,outg):

For every pixelxing(x)

1. Compute the source locationx=hˆ(x)

2. Resamplef(x)at locationx and copy tog(x

遍历输出图像的点。映射到源图像,再去取点。

映射函数h就是原来h的逆矩阵。

当然了,也会碰到非整数的情况,接下来还要作一些别的处理。就不细述。

另一种简单的坐标映射,就是人工指定了输出图像的哪个点相应到源图像的哪个点。在OpenCV里叫remapping
Original test image

一眼就能看出。我们的映射函数是h(x,y) = (I.cols - x, y )

Original test image
初识API

C++:
 void 
warpAffine
(InputArray 
src, OutputArray 
dst, InputArray 
M, Size 
dsize, int 
flags=INTER_LINEAR, int 
borderMode=BORDER_CONSTANT, const Scalar& 
borderValue=Scalar()
)
 
  • src – 输入图像
  • dst – 输出图像。有dsize的大小(由于仿射会把图片变大变小),type和src一样
  • M – 2\times 3 仿射矩阵.
  • dsize – 输出图像的大小.
  • flags –WARP_INVERSE_MAP意味着M是逆变换 ( \texttt{dst}\rightarrow\texttt{src} ).
  • borderMode .
  • borderValue 默认是0.
获得我们的变换矩阵M
/// 设置源图像和相应图像的3组相应点   srcTri[0] = Point2f( 0,0 );   srcTri[1] = Point2f( src.cols - 1, 0 );   srcTri[2] = Point2f( 0, src.rows - 1 );   dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );   dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );   dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );
/// 获得变换矩阵   warp_mat = getAffineTransform( srcTri, dstTri );

附上官方的sample

#include "opencv2/imgproc.hpp"#include 
#include "opencv2/highgui.hpp"using namespace cv;using namespace std;/// Global variableschar* source_window = "Source image";char* warp_window = "Warp";char* warp_rotate_window = "Warp + Rotate";/** @function main */ int main( int argc, char** argv ) { Point2f srcTri[3]; Point2f dstTri[3]; Mat rot_mat( 2, 3, CV_32FC1 ); Mat warp_mat( 2, 3, CV_32FC1 ); Mat src, warp_dst, warp_rotate_dst; /// Load the image src = imread( argv[1], 1 ); /// Set the dst image the same type and size as src warp_dst = Mat::zeros( src.rows, src.cols, src.type() ); /// Set your 3 points to calculate the Affine Transform srcTri[0] = Point2f( 0,0 ); srcTri[1] = Point2f( src.cols - 1, 0 ); srcTri[2] = Point2f( 0, src.rows - 1 ); dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 ); dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 ); dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 ); /// Get the Affine Transform warp_mat = getAffineTransform( srcTri, dstTri ); /// Apply the Affine Transform just found to the src image warpAffine( src, warp_dst, warp_mat, warp_dst.size() ); /** Rotating the image after Warp */ /// Compute a rotation matrix with respect to the center of the image Point center = Point( warp_dst.cols/2, warp_dst.rows/2 ); double angle = -50.0; double scale = 0.6; /// 这里获得旋转矩阵,中心是center,角度为-50度,并缩放为原来的0.6倍,也是简单的样例 rot_mat = getRotationMatrix2D( center, angle, scale ); /// Rotate the warped image warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() ); /// Show what you got namedWindow( source_window, CV_WINDOW_AUTOSIZE ); imshow( source_window, src ); namedWindow( warp_window, CV_WINDOW_AUTOSIZE ); imshow( warp_window, warp_dst ); namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE ); imshow( warp_rotate_window, warp_rotate_dst ); /// Wait until user exits the program waitKey(0); return 0; }

怎样实现h(x,y) = (I.cols - x, y )这种变换呢

for( int j = 0; j < src.rows; j++ ) {    for( int i = 0; i < src.cols; i++ ) {        map_x.at
(j,i) = src.cols - i ; map_y.at
(j,i) = j ; }}
然后再调用

remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
remap很好懂,INTER_LINEAR是线性插值

以下是官方的sample,比較简单就不解释啦
#include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include 
#include
using namespace cv; /// Global variables Mat src, dst; Mat map_x, map_y; char* remap_window = "Remap demo"; int ind = 0; /// Function Headers void update_map( void ); /** * @function main */ int main( int argc, char** argv ) { /// Load the image src = imread( argv[1], 1 ); /// Create dst, map_x and map_y with the same size as src: dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 ); /// Create window namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); /// Loop while( true ) { /// Each 1 sec. Press ESC to exit the program int c = waitKey( 1000 ); if( (char)c == 27 ) { break; } /// Update map_x & map_y. Then apply remap update_map(); remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); /// Display results imshow( remap_window, dst ); } return 0; } /** * @function update_map * @brief Fill the map_x and map_y matrices with 4 types of mappings */ void update_map( void ) { ind = ind%4; for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) { map_x.at
(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; map_y.at
(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at
(j,i) = 0 ; map_y.at
(j,i) = 0 ; } break; case 1: map_x.at
(j,i) = i ; map_y.at
(j,i) = src.rows - j ; break; case 2: map_x.at
(j,i) = src.cols - i ; map_y.at
(j,i) = j ; break; case 3: map_x.at
(j,i) = src.cols - i ; map_y.at
(j,i) = src.rows - j ; break; } // end of switch } } ind++; }
荷枪实弹
remap还有很多其它的功能,比方能帮我们实现图像的缩放,k是缩放系数
#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include 
#define K 1.1using namespace cv;// Global variablesMat src, dst;Mat map_x, map_y;char* remap_window = "Remap demo";void update_map( void );int main( int argc, char** argv ) { src = imread( argv[1], 1 ); dst.create( src.rows*K, src.cols*K, src.type() ); map_x.create( src.rows*K, src.cols*K, CV_32FC1 ); map_y.create( src.rows*K, src.cols*K, CV_32FC1 ); namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); update_map(); remap( src, dst, map_x, map_y, INTER_LANCZOS4, BORDER_CONSTANT, Scalar(0, 0, 0) ); imshow( remap_window, dst ); waitKey(0); return 0;}void update_map( void ){ for( int j = 0; j < (int)(K*src.rows); j++ ) { for( int i = 0; i < (int)(K*src.cols); i++ ) { map_x.at
(j,i) = i/K; map_y.at
(j,i) = j/K; } }}
举一反三
我们一開始就见到了这图片,那么怎么实现呢?
我在y轴事实上没有缩放。仅仅在x轴进行了缩放。分别分成了三段。

我的程序首先要用户在图片上点两次,各自是要扩大的举行的左上角和右下角。
然后,就以左上角的x和右下角的x为界。分为3段进行映射。

#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include 
using namespace cv;using namespace std;#define K 2 //表示取2个点#define threshold 0.1 //缩放的程度// Global variablesMat src, src_copy, dst;Mat map_x, map_y;char* window = "Scale demo";int samplePointNum = 0; //已经点了几次Point myPoints[K]; //存放用户点击的坐标bool flag = false; //点击2次,就设置flag,開始更新void update_map( void ){ int leftX = threshold*src.cols; int rightX = src.cols - leftX; int recLeftX = myPoints[0].x; int recRightX = myPoints[1].x; for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { if(i > leftX && i < rightX) { map_x.at
(j,i) = recLeftX + (i - leftX) * (recRightX - recLeftX)/(rightX - leftX); map_y.at
(j,i) = j; } else if(i <= leftX) { map_x.at
(j,i) = i * recLeftX/leftX; map_y.at
(j,i) = j; } else { map_x.at
(j,i) = recRightX + (i- rightX) * (src.cols - recRightX)/(src.cols - rightX); map_y.at
(j,i) = j; } } } flag = true; remap( src_copy, dst, map_x, map_y, INTER_LANCZOS4, BORDER_CONSTANT, Scalar(0, 0, 0) ); imshow( window, dst ); imwrite( "./result.jpg", dst ); return;}static void onMouse( int event, int x, int y, int, void* ){ if(samplePointNum == K){ if(!flag) update_map(); return; } if( event != EVENT_LBUTTONDOWN) return; rectangle(src, Point(x-3,y-3), Point(x+3,y+3), Scalar(255,0,0), 1); myPoints[samplePointNum++] = Point(x,y); imshow( window, src ); return; }int main( int argc, char** argv ) { src = imread( argv[1], 1 ); src_copy = src.clone(); dst.create( src.rows, src.cols, src.type() ); map_x.create( src.rows, src.cols, CV_32FC1 ); map_y.create( src.rows, src.cols, CV_32FC1 ); namedWindow( window, CV_WINDOW_AUTOSIZE ); setMouseCallback( window, onMouse, 0 ); imshow( window, src ); waitKey(0); return 0;}
你可能感兴趣的文章